Mutual Information-Based Inputs Selection for Electric Load Time Series Forecasting
نویسندگان
چکیده
Providing accurate load forecast to electric utility corporations is essential in order to reduce their operational costs and increase profits. Hence, training set selection is an important preprocessing step which has to be considered in practice in order to increase the accuracy of load forecasts. The usage of mutual information (MI) has been recently proposed in regression tasks, mostly for feature selection and for identifying the real instances from training sets that contains noise and outliers. This paper proposes a methodology for the training set selection in a least squares support vector machines (LS-SVMs) load forecasting model. A new application of the concept of MI is presented for the selection of a training set based on MI computation between initial training set instances and testing set instances. Accordingly, several LS-SVMs models have been trained, based on the proposed methodology, for hourly prediction of electric load for one day ahead. The results obtained from a real-world data set indicate that the proposed method increases the accuracy of load forecasting as well as reduces the size of the initial training set needed for model training.
منابع مشابه
Short term load forecast by using Locally Linear Embedding manifold learning and a hybrid RBF-Fuzzy network
The aim of the short term load forecasting is to forecast the electric power load for unit commitment, evaluating the reliability of the system, economic dispatch, and so on. Short term load forecasting obviously plays an important role in traditional non-cooperative power systems. Moreover, in a restructured power system a generator company (GENCO) should predict the system demand and its corr...
متن کاملShort term electric load prediction based on deep neural network and wavelet transform and input selection
Electricity demand forecasting is one of the most important factors in the planning, design, and operation of competitive electrical systems. However, most of the load forecasting methods are not accurate. Therefore, in order to increase the accuracy of the short-term electrical load forecast, this paper proposes a hybrid method for predicting electric load based on a deep neural network with a...
متن کاملCorrelation and instance based feature selection for electricity load forecasting
Appropriate feature (variable) selection is crucial for accurate forecasting. In this paper we consider the task of forecasting the future electricity load from a time series of previous electricity loads, recorded every 5 minutes. We propose a two-step approach that identifies a set of candidate features based on the data characteristics and then selects a subset of them using correlation and ...
متن کاملImproved Neural Networks with Random Weights for Short-Term Load Forecasting
An effective forecasting model for short-term load plays a significant role in promoting the management efficiency of an electric power system. This paper proposes a new forecasting model based on the improved neural networks with random weights (INNRW). The key is to introduce a weighting technique to the inputs of the model and use a novel neural network to forecast the daily maximum load. Ei...
متن کاملMachine learning algorithms for time series in financial markets
This research is related to the usefulness of different machine learning methods in forecasting time series on financial markets. The main issue in this field is that economic managers and scientific society are still longing for more accurate forecasting algorithms. Fulfilling this request leads to an increase in forecasting quality and, therefore, more profitability and efficiency. In this pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Entropy
دوره 15 شماره
صفحات -
تاریخ انتشار 2013